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Abstract

This paper presents a solution to a free vibration problem of stepped beams loaded by axial forces. The frequency

equation is obtained by using properties of the Green’s functions corresponding to uniform segments of the beam. The

approach pertains to the vibration of beams consisting of an arbitrary number of uniform segments. The method can be

used to obtain an approximate solution to vibration problems of beams with continuously varying cross-sections.

Numerical examples are presented to demonstrate the usefulness of the method in the frequency analysis of stepped beams.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration problems of stepped beams are very important because of their practical significance in
engineering applications. Stepped beams can be used to model the vibration of a robot arm, crane boom, tall
building, etc. The vibration problems of axially loaded stepped Euler–Bernoulli beams are considered in Refs.
[1–3]. Papers [1,2] deal with free vibrations of stepped beams partially stressed with follower forces. The force
acts on one segment of a beam, consisting of two uniform segments. In order to solve the problem the authors
of paper [1] used the Galerkin finite element formulation and the method proposed by Kikuchi. The author of
paper [2] obtained the frequency equation by means of an exact approach. In Ref. [3], the free vibration of a
beam with one step is also considered. The beam is loaded by a compressive or tensile axial force which
changes stepwise at the step. The exact solution to the problem and the numerical results of the frequencies
and critical forces are presented. The solution of free vibration problems of beams with up to three steps,
varying in cross-section without an axial force, is presented in Ref. [4]. The frequency parameters are tabulated
for beams with various types of end supports.

The solution to vibration problems of stepped beams can be obtain by using Green’s function method
(GFM). The advantage of using this method is best seen in the case of a stepped beam consisting of a high
number of uniform segments. The GFM was applied in paper [5] where the vibration problems of stepped
beams and rectangular plates are discussed, but no consideration is given to the vibration of axially loaded
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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beams. In Ref. [6], this method was used in the free vibration analysis of axially loaded beams with discrete
elements attached, but the analysis only concerns the vibration of uniform beams.

The subject of our paper is the problem of the free vibration of an axially loaded stepped beam. The
formulation of and solution to the problem concern a stepped Euler–Bernoulli beam consisting of an arbitrary
number of segments with constant cross-sections. Additionally, we also considered the vibration of a
cantilever stepped beam which includes a tip mass and/or an elastic support at the free end. The analytical
solution to the problem is obtained by the application of GFM. The solution is then used in the numerical
calculation of the eigenfrequencies of the stepped beams. Exemplary numerical results are given to shown the
application of the presented approach to obtain the approximate solution to vibration problems of beams with
continuously varying cross-sections.

2. Theory

Consider a stepped beam which consists of n segments with constant cross-sections (Fig. 1). The governing
equations for the transverse displacements wi of the segments are

L1½w1ðx; tÞ� ¼ s1ðtÞ dðx� L1Þ �m1ðtÞd
0
ðx� L1Þ for x 2 ½0;L1�, (1)

Li½wiðx; tÞ� ¼ �si�1ðtÞ dðx� Li�1Þ þmi�1ðtÞ d
0
ðx� Li�1Þ þ siðtÞ dðx� LiÞ �miðtÞd

0
ðx� LiÞ

for x 2 ½Li�1;Li�; i ¼ 2 ; . . . ; n� 1, ð2Þ

Ln½wnðx; tÞ� ¼ �sn�1ðtÞ dðx� Ln�1Þ þmn�1ðtÞ d
0
ðx� Ln�1Þ þ f ðx; tÞ for x 2 ½Ln�1;L�, (3)

where Li is a differential operator:

Li ¼ ðEIÞi
q4

qx4
þ pi

q2

qx2
þ ðrAÞi

q2

qt2
for i ¼ 1; . . . ; n,

d( � ) is Dirac’s delta function, d0( � ) is the doublet function, pi is the axial load acting on the ith segment of the
beam, (rA)i and (EI)i are the mass per unit length and the flexural rigidity of the ith segment, respectively.
Function f(x, t) occurring in Eq. (3) denotes a force per unit length of the beam, while si(t) and mi(t),
respectively, represent the shear force and bending moment acting on the right end of the ith segment. A
schematic diagram of the ith segment of the considered beam is shown in Fig. 2.

Functions w1 and wn, which describe the transverse displacements of the edge segments, satisfy boundary
conditions which depend on the constraints of the beam ends. The conditions may be written symbolically in
the form

B0½w1�
��
x¼0
¼ 0; B1½wn�

��
x¼L
¼ 0, (4)

where B0 and B1 are two-dimensional ‘‘vectors’’, the components of which are linear, spatial differential
operators. Moreover, the continuity of displacements and slopes indicate the following conditions:

wiðLi; tÞ ¼ wiþ1ðLi; tÞ; wi;xðLi; tÞ ¼ wiþ1;xðLi; tÞ; i ¼ 1 ; . . . ; n� 1. (5)
L1

L2
Ln -1

Ln = L 

x

w

k

mc

Fig. 1. A sketch of the considered system.
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Fig. 2. A sketch of the ith segment of the stepped beam.

S. Kukla, I. Zamojska / Journal of Sound and Vibration 300 (2007) 1034–10411036
For the free vibration of the beam, we assume that

wiðx; tÞ ¼W iðxÞe
jot; siðtÞ ¼ Sie

jot; miðtÞ ¼Mie
jotf ðx; tÞ ¼ F ðxÞejot, (6)

where j ¼
ffiffiffiffiffiffiffi
�1
p

and o is the natural frequency of the beam. Substituting (6) into Eqs. (1)–(5), obtains

~L1½W 1ðx1Þ� ¼ S1dðx1 � 1Þ �M1d
0
ðx1 � 1Þ, (7)

~Li½W iðxiÞ� ¼ �si�1Si�1dðxiÞ þ mi�1Mi�1d
0
ðxiÞ þ Sidðxi � 1Þ �Mid

0
ðxi � 1Þ; i ¼ 2 ; . . . ; n� 1, (8)

~Ln½W nðxnÞ� ¼ �sn�1Sn�1dðxnÞ þ mn�1Mn�1d
0
ðxnÞ þ F ðxnÞ, (9)

where

~Li ¼
d4

dx4i
þ Pi

d2

dx2i
� O4

i

for xi 2 ½0; 1�, xi ¼ ðx� Li�1Þ=li, li ¼ Li � Li�1 is the length of the ith beam segment, W i ¼W i=li,
Pi ¼ pil

2
i =ðEIÞi, Si ¼ Sil

2
i =ðEIÞi, Mi ¼Mil

3
i =ðEIÞi, O4

i ¼ ðrAÞio
2l4i =ðEIÞi, li ¼ liþ1=li, mi ¼ l3i ðEIÞi=ðEIÞiþ1,

si ¼ l2i ðEIÞi=ðEIÞiþ1. The last term in Eq. (9) represents an added discrete element (a concentrated mass and/
or a spring) attached to the beam at its free end. Therefore, this function assumes the form [6]

F ðxnÞ ¼ ðMc O4
n � KÞW nðxnÞdðxn � 1Þ, (10)

where K ¼ kl3n=ðEIÞn, Mc ¼ mc=ððrAÞnlnÞ, k is the stiffness coefficient of the translational spring, mc is the
concentrated mass attached at the beam end. From Eqs. (4)–(6) it follows that functions Wi satisfy the
conditions below:

~B0½W 1�
��
x1¼0
¼ 0; ~B1 W n½ �

��
xn¼1
¼ 0, (11)

W ið1Þ ¼ liW iþ1ð0Þ; W i;xi
ð1Þ ¼W iþ1;xiþ1

ð0Þ; i ¼ 1 ; . . . ; n� 1. (12)
3. Solution to the problem

The solution to the free vibration problem is obtained by using GFM. To this end we need Green’s
functions Gi which satisfy the differential equations

~Li½Gi� ¼ dðxi � ZÞ; i ¼ 1 ; . . . ; n (13)

and the following boundary conditions:

~B0 G1½ �
��
x1¼0
¼ 0; G1;x1x1

��
x1¼1
¼ ðG1;x1x1x1 þ P1G1;x1 Þ

��
x1¼1
¼ 0, (14)

Gi;xixi

��
xi¼0
¼ ðGi;xixixi

þ PiGi;xi
Þ
��
xi¼0
¼ 0; Gi;xixi

��
xi¼1
¼ ðGi;xixixi

þ PiGi;xi
Þ
��
xi¼1
¼ 0 for i ¼ 2; 3; . . . ; n� 1,

(15)
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Gn;xnxn

��
xn¼0
¼ ðGn;xnxnxn

þ PnGn;xn
Þ
��
xn¼0
¼ 0; ~B1 Gn½ �

��
xn¼1
¼ 0. (16)

To present the solution to problem (13)–(16), four linearly independent solutions to a homogeneous
differential equation associated with the fourth-order Eq. (13) are needed. It is simple to prove that the
following four functions satisfy the homogeneous equation associated with Eq. (13):

fð0Þi ðxiÞ ¼ cosh bixi � cos aixi; fð1Þi ðxiÞ ¼ bi sinh bixi þ ai sin aixi;

fð2Þi ðxiÞ ¼ b2i cosh bixi þ a2i cos aixi; fð3Þi ðxiÞ ¼ b3i sinh bixi � a3i sin aixi;

where ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2ÞðPi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

i þ 4O4
i

q
Þ

r
, bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þð�Pi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

i þ 4O4
i

q
Þ

r
. In order to show that these functions

are linearly independent, the Wronskian should be determined. After calculation, the Wronskian is obtained

in the form: �O4
i ðP

2
i þ 4O4

i Þ
2. Because the Wronskian is not equal to zero for Oi40, then functions

fðjÞi ðxiÞ ðj ¼ 0; . . . ; 3Þ constitute a fundamental set of solutions to the homogenous equation associated with

(13). Therefore, the general solution to Eq. (13) may be written as

Giðxi; Zi;OiÞ ¼
X4
j¼1

CijðZiÞf
ðj�1Þ
i ðxiÞ þ Gpiðxi; ZiÞ; i ¼ 1 ; . . . ; n, (17)

where Gpiðxi; ZiÞ denotes a particular solution to Eq. (13). This solution can be presented in the form [6]

Gpi xi; Zi

� �
¼ f̄

ð1Þ

i ðxi � ZiÞHðxi � ZiÞ,

where H denotes a Heaviside function and

f̄
ð1Þ

i ðxiÞ ¼
sinh bixi

bi

�
sinh aixi

ai

.

The four constants Cij (j ¼ 1 ,y, 4) occurring in the general solution (17) are determined on the basis of the
boundary conditions. Two of the four constants can be eliminated by using the boundary conditions which are
satisfied at xi ¼ 0. For example, after eliminating the two constants, the Green’s function G1 corresponding to
a beam with the left end clamped ðG1jx1¼0 ¼ G1;x1 jx1¼0 ¼ 0Þ, may be expressed by the formula:

G1ðx1; Z1;O1Þ ¼ C11ðZ1Þf1ðx1Þ þ C12ðZ1Þf
1ð Þ
1 ðx1Þ þ f̄

1ð Þ

1 ðx1 � Z1ÞH ðx1 � Z1Þ. (18)

Similarly, using Eq. (17) and conditions (15a) or (16a), the Green’s functions Gi corresponding to a beam
with the left end free may be written as follows:

Giðxi; Zi;OiÞ ¼ Ci1ðZiÞf
ð1Þ
i ðxiÞ þ Ci2ðZiÞf

ð2Þ
i ðxiÞ þ f̄

ð1Þ

i ðxi � ZiÞHðxi � ZiÞ; i ¼ 1; 2; . . . ; n, (19)

where

f̄
ð2Þ

i ðxiÞ ¼
cosh bixi

b2i
þ

cos aixi

a2i
.

Functions Ci1 (Zi) and Ci2 (Zi) in Eqs. (18) and (19) are determined by using boundary conditions for xi ¼ 1.
For example, when the right end of the beam is free, the functions (using conditions (14b) and (15b)) can be
written in the form

C11ðZ1Þ ¼
1

D1
fð1Þ1 ð1Þf̄

ð2Þ

1 ð1� Z1Þ � fð1Þ1 ð1� Z1Þf̄
ð2Þ

1 ð1Þ
n o

,

C12ðZ1Þ ¼ �
1

D1
fð2Þ1 ð1Þf̄

ð2Þ

1 ð1� Z1Þ � fð1Þ1 ð1� Z1Þf̄
ð1Þ

1 ð1Þ
n o

,

Ci1ðZiÞ ¼
1

Di

fð0Þi ð1Þf̄
ð2Þ

i ð1� ZiÞ � fð1Þi ð1� ZiÞf̄
ð3Þ

i ð1Þ
n o

,
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Ci2ðZiÞ ¼
1

Di

fð0Þi ð1Þf
ð1Þ
i ð1� ZiÞ � f̄

ð2Þ

i ð1� ZiÞf
ð3Þ
i ð1Þ

n o
,

where D1 ¼ fð2Þ1 ð1Þf̄
ð2Þ

1 ð1Þ � fð1Þ1 ð1Þf̄
ð1Þ

1 ð1Þ, for the cantilever beam, Di ¼ fð3Þi ð1Þf̄
ð3Þ

i ð1Þ � ½f
ð0Þ
i ð1Þ�

2, for the free

beam.
The Green’s functions corresponding to uniform beams with other boundary conditions can be similarly

determined.
The solutions to Eqs. (7)–(9) which satisfy boundary conditions (11) may be expressed by the Green’s

functions as follows:

W 1ðx1Þ ¼ S1G1ðx1; 1;O1Þ þM1G1;Z1 ðx1; 1;O1Þ, (20)

W iðxiÞ ¼ � si�1Si�1Giðxi; 0;OiÞ � mi�1Mi�1Gi;Zi
ðxi; 0;OiÞ

þ SiGiðxi; 1;OiÞ þMiGi;Zi
ðxi; 1;OiÞ for i ¼ 2; :::; n� 1, ð21Þ

W nðxnÞ ¼ � sn�1Sn�1Gnðxn; 0;OnÞ � mn�1Mn�1Gn;Zn
ðxn; 0;OnÞ

þ McO4
n � K

� �
W nð1ÞGnðxn; 1;OnÞ. ð22Þ

Substituting functions Wi into continuity conditions (12), we obtain a set of equations with the unknowns:
S1,M1,S2,M2,y,Sn�1,Mn�1,Wn(1). The equations are completed by adding an equation which is obtained
by assuming xn ¼ 1 in Eq. (22). This set of the equations may be written in the following matrix form:

AðoÞx ¼ 0, (23)

where x ¼ [S1 M1ySn�1 Mn�1 Wn(1)]
T and A(o) ¼ [aij]1pi, jp2n�1. The non-zero elements aij of matrix A are

given in Appendix A.
A non-trivial solution to Eq. (23) exists when the determinant of matrix A is set equal to zero, yielding the

frequency equation of the stepped beam:

det AðoÞ ¼ 0. (24)

If the Green’s function G1 occurring in this equation corresponds to the clamped–free beam and functions
Gi (i ¼ 2,y, n) correspond to the free–free beams, then the equation corresponds to a stepped cantilever
beam. After assuming function G1 corresponding to the free–free beam, the frequency equation for the beam
with left end free can be obtained. If parameter K, which characterize the stiffness of the elastic support on the
right end of the beam, tends to infinity in Eq. (24), then the frequency equation corresponding to the beam
with a pinned right end is obtained.

Frequency Eq. (24) with respect to the circular frequency o, is then solved numerically by using an
approximate method.

4. Numerical examples

The presented procedure was proved by comparing the numerical results obtained here with the results
presented in the literature. The eigenfrequencies of the clamped–free (c–f) and free–pined (f–p) beams with
one, two or three steps were calculated with the use of Eq. (24) and are given in Table 1. The calculations were
performed for beams without any support or attached mass. The uniform segments of the beam with one step
are loaded by a compressive (P1 ¼ 10, P2 ¼ 10) or tensile (P2 ¼ �5) force, the beams with three or four
segments are considered without any axial load. The frequencies obtained by Naguleswaran in Ref. [3] (for
one-step beam, n ¼ 2) and [4] (for two- and three-step beams, n ¼ 3 or 4) are written in parentheses.

Next, we investigated the effect of the axial force acting on one segment of the one-step cantilever on the
natural frequency of the beam. A beam with or without a concentrated mass or elastic support at the free end
was considered. The results were obtained for a stepped beam consisting of two uniform segments of exactly
the same length but differing in the widths of the rectangular cross-sections. The frequency curves are shown
in Fig. 3. The continuous lines refer to a beam with segments for which g ¼ A2=A1 ¼ I2=I1 ¼ 1:0, the dotted
lines concern a beam with g ¼ 0:75 and the dashed lines refer to a beam with g ¼ 0:5. The letters labelling the
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Fig. 3. Eigenfrequency parameter values O1;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrAÞ1L4o2

1=ðEIÞ1
4
q

as a function of the axial force P1 ¼ p1L2=ðEIÞ1 for one-step

cantilever beam with or without a concentrated mass or elastic support at the free end (description of the curves a–h is given in Table 2);

—— g ¼ 1.0, � � � � � � � � g ¼ 0.75, – – – – g ¼ 0.5.

Table 1

Five dimensionless eigenfrequencies, O1;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrAÞ1L4o2

j =ðEIÞ1
4
q

, of clamped–free (c–f) and free–pinned (f–p) beams with n ¼ 2 or 3 or 4

uniform segments (in parentheses are given the results presented in Refs. [3] or [4])

BC N P1 P2 O1,1 O1,2 O1,3 O1,4 O1,5

c–f 2 10 10 2.96814 (2.9681) 5.40792 (5.4079) 7.98020 (7.9802) 10.74571 13.45520

c–f 2 10 �5 3.88793 (3.8879) 7.00962 (7.0096) 10.14408 (10.1441) 13.01341 16.01630

c–f 3 0 0 2.02880 (2.02880) 3.59685 (3.59685) 5.29414 (5.29414) 7.81612 8.97501

c–f 4 0 0 2.51010 (2.51010) 4.44542 (4.44542) 5.81961 (5.81961) 8.57074 11.39880

f–p 2 10 10 2.33785 (2.3378) 4.66459 (4.6646) 7.18013 (7.1801) 10.03578 12.75424

f–p 2 10 �5 3.90380 (3.9038) 6.57734 (6.5773) 9.57250 (9.5725) 12.42295 15.31436

f–p 3 0 0 1.54446 (1.54446) 4.43732 (4.43732) 7.35818 (7.35818) 8.31478 11.33268

f–p 4 0 0 2.13937 (2.13937) 5.22801 (5.22801) 8.21372 (8.21372) 10.11844 12.43464
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curves relate to the concentrated mass or elastic support attached at the free end of the beam. The non-
dimensional values of the concentrated mass, M̄c ¼ mc=mb where mb ¼ ðrAÞ1l1 þ ðrAÞ2l2, and the stiffness
coefficient of the elastic support, K̄ ¼ kL3=ðEIÞ2, which were used in the numerical calculations, are presented
in Table 2. The results show that both the tip mass as well as the change in the ratio g ¼ A2=A1 ¼ I2=I1
influence the frequency of the stepped beam but do not change the critical load. In the case of a beam with an
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Table 2

The non-dimensional values of the stiffness of the elastic support, K̄ ¼ kL3=ðEIÞ2; and the concentrated mass, M̄c ¼ mc=mb, used in

numerical calculations of the frequency curves shown in Fig. 3

Description of the curves in Fig. 3

a b c d e f g h

K̄ 0 0 0 2 5 10 20 N

M̄c 1/(1+g) 1 0 0 0 0 0 0

Table 3

Five dimensionless eigenfrequencies O1;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAð Þ1L4o2

j =ðEIÞ1
4
q

of the cantilever beam with n uniform segments of constant height and

width changing at the steps (the results presented in Ref. [8] are given in parentheses)

A/A0 ¼ I/I0 n O1,1 O1,2 O1,3 O1,4 O1,5

1�x/2 5 2.05727 4.81849 7.90833 11.01534 14.13583

10 2.07067 4.84027 7.93754 11.04969 14.17346

20 2.07597 4.84754 7.94681 11.06122 14.18714

40 2.07824 (2.07730) 4.85013 (4.89666) 7.94970 (7.94979) 11.06465 (11.06524) 14.19118

1+x+x2 5 1.58284 4.48133 7.77289 10.96067 14.11320

10 1.57436 4.46148 7.74273 10.92592 14.09137

20 1.57250 4.45642 7.73422 10.91452 14.07746

40 1.57217 (1.57187) 4.45518 (4.45474) 7.73196 (7.73137) 10.91144 (10.91059) 14.07362
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elastic support at the free end it can be seen that an increase in ratio g causes an increase in the critical load. If
the stiffness coefficient K tends to infinity, then the results refer to clamped–pinned beams (the curves labelled
‘‘h’’ in Fig. 3).

A beam with a continuously varying cross-section can be approximated by a stepped beam with any number
of uniform segments. This approximation of Timoshenko beams was used in paper [7]. The vibration
frequencies of Euler–Bernoulli beams with varying cross-sections are presented in tabular form, for example,
by Abrate in Ref. [8]. A comparison of the frequencies obtained in Ref. [8] and those obtained by using
frequency Eq. (24) for various numbers of uniform segments is presented in Table 3 (the numbers in
parentheses are the square roots of the non-dimensional frequencies given in Ref. [8]). The calculations were
performed for a cantilever beam of rectangular cross-section without an axial force. Two cases of the beam are
considered: a beam with constant height and linearly varying width ðA=A0 ¼ I=I0 ¼ 1� x=2Þ and a beam with
constant height and quadratically varying width ðA=A0 ¼ I=I0 ¼ 1þ xþ x2Þ, where A0, I0 are the cross-
sectional area and the moment of inertia at x ¼ 0, respectively. The width of the ith segment of the stepped
beam is equal to the width of the non-uniform beam in the middle of the segment, and the heights of the beams
are the same. The results presented in the table show that the eigenfrequencies become increasingly accurate as
the number of uniform segments in the approximated stepped beam increase.

5. Conclusions

The paper presents the application of the GFM in the frequency analysis of axially loaded stepped beams.
The exact transcendental frequency equation was solved by using the numerical method. Stepped beams with
any number of uniform segments may be used as an approximation of non-uniform beams with continuously
varying cross-section areas. The example shows that the accuracy of the numerically obtained eigenfrequencies
improves as the step number of the stepped beams increases. Although the examples presented in this paper
concern clamped–free and free–pinned stepped beams, the approach may be used in the vibration analysis of
stepped beams with other boundary conditions.
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Appendix A

The non-zero elements aij of the matrix A which occurs in Eq. (24) are as follows (n is number of uniform
segments of the stepped beam):
for i ¼ 1, 2,y, n�1: a2i�1;2i�1 ¼ Gið1; 1;OiÞ þ lisiGiþ1ð0; 0;Oiþ1Þ,
a2i�1;2i ¼ Gi;xi

ð1; 1;OiÞ þ lisiGiþ1;xiþ1
ð0; 0;Oiþ1Þ,

a2i;2i�1 ¼ Gi;xi
ð1; 1;OiÞ þ lisiGiþ1;xiþ1

ð0; 0;Oiþ1Þ,

a2i;2i ¼ Gi;Zixi
ð1; 1;OiÞ þ siGiþ1;Ziþ1xiþ1

ð0; 0;Oiþ1Þ;

for i ¼ 1, 2,y, n�2:
a2i�1;2iþ1 ¼ �liGiþ1ð0; 1;Oiþ1Þ, a2i�1;2iþ2 ¼ �liGiþ1;xiþ1

ð0; 1;Oiþ1Þ,

a2i;2iþ1 ¼ �Giþ1;xiþ1
ð0; 1;Oiþ1Þ, a2i;2iþ2 ¼ �Giþ1;Ziþ1xiþ1

ð0; 1;Oiþ1Þ;

for i ¼ 2, 3,y, n�1: a2i�1;2i�3 ¼ �si�1Gið1; 0;OiÞ, a2i�1;2i�2 ¼ �mi�1Gi;xi
ð1; 0;OiÞ,

a2i;2i�3 ¼ �si�1Gi;xi
ð1; 0;OiÞ, a2i;2i�2 ¼ �mi�1Gi;Zixi

ð1; 0;OiÞ

and

a2n�3;2n�1 ¼ �ðK �McO4
nÞ ln�1Gnð0; 1;OnÞ, a2n�2;2n�1 ¼ �ðK �McO4

nÞGn;xn
ð0; 1;OnÞ,

a2n�1;2n�3 ¼ sn�1Gnð1; 0;OnÞ, a2n�1;2n�2 ¼ mn�1Gn;xn
ð1; 0;OnÞ, a2n�1;2n�1 ¼ 1þ ðK �McO4

nÞGnð1; 1;OnÞ.
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